نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
37,021 نتائج ل "Antioxidants - pharmacology"
صنف حسب:
Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells
Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.
Argan Oil-Mediated Attenuation of Organelle Dysfunction, Oxidative Stress and Cell Death Induced by 7-Ketocholesterol in Murine Oligodendrocytes 158N
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% / ) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, β-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.
A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress
Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress. Despite recent advances in the research of biomarkers, early diagnosis, and pharmacotherapy, there are no treatments that can halt the progression of these age-associated neurodegenerative diseases. Numerous epidemiological studies indicate that long-term intake of a Mediterranean diet, characterized by a high consumption of extra virgin olive oil, correlates with better cognition in aged populations. Olive oil phenolic compounds have been demonstrated to have different biological activities like antioxidant, antithrombotic, and anti-inflammatory activities. Oleocanthal, a phenolic component of extra virgin olive oil, is getting more and more scientific attention due to its interesting biological activities. The aim of this research was to characterize the neuroprotective effects of oleocanthal against H₂O₂-induced oxidative stress in neuron-like SH-SY5Y cells. Moreover, protein expression profiling, combined with pathways analyses, was used to investigate the molecular events related to the protective effects. Oleocanthal was demonstrated to counteract oxidative stress, increasing cell viability, reducing reactive oxygen species (ROS) production, and increasing reduced glutathione (GSH) intracellular level. Proteomic analysis revealed that oleocanthal significantly modulates 19 proteins in the presence of H₂O₂. In particular, oleocanthal up-regulated proteins related to the proteasome, the chaperone heat shock protein 90, the glycolytic enzyme pyruvate kinase, and the antioxidant enzyme peroxiredoxin 1. Moreover, oleocanthal protection seems to be mediated by Akt activation. These data offer new insights into the molecular mechanisms behind oleocanthal protection against oxidative stress.
Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Unravelling the Gastroprotective Potential of Kefir: Exploring Antioxidant Effects in Preventing Gastric Ulcers
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Important Flavonoids and Their Role as a Therapeutic Agent
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources
Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.
Targeting oxidative stress in disease: promise and limitations of antioxidant therapy
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Kaempferol: A Key Emphasis to Its Anticancer Potential
A marked decrease in human cancers, including breast cancer, bone cancer, and cervical cancer, has been linked to the consumption of vegetable and fruit, and the corresponding chemoprotective effect has been associated with the presence of several active molecules, such as kaempferol. Kaempferol is a major flavonoid aglycone found in many natural products, such as beans, bee pollen, broccoli, cabbage, capers, cauliflower, chia seeds, chives, cumin, moringa leaves, endive, fennel, and garlic. Kaempferol displays several pharmacological properties, among them antimicrobial, anti-inflammatory, antioxidant, antitumor, cardioprotective, neuroprotective, and antidiabetic activities, and is being applied in cancer chemotherapy. Specifically, kaempferol-rich food has been linked to a decrease in the risk of developing some types of cancers, including skin, liver, and colon. The mechanisms of action include apoptosis, cell cycle arrest at the G2/M phase, downregulation of epithelial-mesenchymal transition (EMT)-related markers, and phosphoinositide 3-kinase/protein kinase B signaling pathways. In this sense, this article reviews data from experimental studies that investigated the links between kaempferol and kaempferol-rich food intake and cancer prevention. Even though growing evidence supports the use of kaempferol for cancer prevention, further preclinical and clinical investigations using kaempferol or kaempferol-rich foods are of pivotal importance before any public health recommendation or formulation using kaempferol.
Antioxidant Properties of Ferulic Acid and Its Possible Application
Ferulic acid has low toxicity and possesses many physiological functions (anti-inflammatory, antioxidant, antimicrobial activity, anticancer, and antidiabetic effect). It has been widely used in the pharmaceutical, food, and cosmetics industry. Ferulic acid is a free radical scavenger, but also an inhibitor of enzymes that catalyze free radical generation and an enhancer of scavenger enzyme activity. Ferulic acid has a protective role for the main skin structures: keratinocytes, fibroblasts, collagen, elastin. It inhibits melanogenesis, enhances angiogenesis, and accelerates wound healing. It is widely applied in skin care formulations as a photoprotective agent, delayer of skin photoaging processes, and brightening component. Nonetheless, its use is limited by its tendency to be rapidly oxidized.